
1W H I T E P A P E R

The AWS S3 API has become a de-facto standard for accessing data stored
on object storage platforms. The appearance of this de-facto standard
makes possible for data to be migrated between object platforms provided
by different vendors. It is very similar to NAS migrations wherein data
can be migrated between disparate vendor platforms via the use of the
standard NAS protocols (SMB and/or NFS).

S3 Review

Object platforms that support the S3 API typically store data in buckets
which are an abstraction of the underlying physical storage. The buckets
provide a flat namespace. This contrasts with NAS platforms that use file
systems implementing hierarchical namespaces that employ the concept of
directories to store logically related content. In S3, all the data is co-mingled
in the same bucket.

OBJECT MIGRATIONS

To aid with the organization of content, S3 compatible platforms allow object keys (e.g., object names) to include
prefixes and delimiters. The combination of prefixes and delimiters allows for the object keys to mimic the hierarchical
structures found on traditional NAS systems. For example, on a NAS platform a file named schedule.pdf might be
stored in the directory /main/subdir1/subdir2/schedule.pdf along with other logically related files. If this file was copied
to an S3 bucket, it would simply exist in the bucket with all other copied items. But with the ability to add prefixes and
delimiters to the object name; S3 allows the mimicking of a directory structure since the prefixes “main”, “subdir1”, and
“subdir2” can be added to the object name and delimited with the “/” character such that the resulting object name is
“main/subdir1/subdir2/schedule.pdf”. When browsing the contents of the bucket, the browsing application can filter
the content in a way to present a view comparable to the familiar directory tree found on NAS systems.

In S3, objects are always written and read via HTTP requests. This makes sense because the S3 API is a REST API and
HTTP is the mechanism used to interact with the API. In simplest terms: “PUT” requests write objects while “GET”
requests read objects. Whenever objects are written they are stored in an immutable fashion – any updates cause a
new version of the object to be written. While it is possible to enable versioning on buckets where each new successive
update of an object creates a new historical version; there is no requirement for versions to be maintained. If versioning
is not enabled, it does not mean objects cannot be updated but simply that a history of prior versions will not be
maintained. Updates to an object still create a new object regardless of whether versioning has been enabled on
the bucket. And yes, the versioning applies to the ENTIRE bucket versus portions of it.

2W H I T E P A P E R

In addition to the core data associated directly with the
object, there is also metadata. Within S3 there are two
categories of metadata – User and System-defined.
User metadata, as the name implies, can be supplied by
the end user and/or application writing the object. The
user metadata is stored as key-value pairs in “x-amz-
meta-“ request headers which uniquely identify them as
user metadata versus other HTTP headers. Interestingly,
an update of user metadata requires the entire object to
be rewritten.

System-defined metadata includes metadata items such
as the “Last-Modified” timestamp and the ETag (entity
tag) associated with the object. These values are assigned
to the object by the server when the object is written and
cannot be manipulated by calling applications. Since these
values are assigned by the server, there is not the ability
of updating system-defined metadata as is possible with
user metadata.

S3 API IMPLEMENTATIONS

Since we now know some basics about S3
implementations and behavior, we can move on to the
subject of migrating content between S3 systems.

As previously mentioned, the AWS S3 API has become a
de-facto standard among storage vendors. It’s important
to keep in mind that a de-facto standard does not equate
to an industry standard as specified by IEEE, for example.
This being the case, each vendor offering a storage
platform with an S3 compatible interface is providing their
own interpretation of the API and there are varying levels
of compatibility with the AWS API.

An example of an incompatibility is “Storage Class.”
AWS provides several storage classes corresponding to
varying levels of performance, cost, accessibility, and
even durability. While it is possible to write an object
(PutObject request) to a specific storage class in AWS,
it may not be possible with an object storage platform
from another vendor since they may effectively have
a single storage class due to homogeneous storage
accounting for the entire object storage system. A
vendor in this situation will likely not implement support
for writing to specific storage classes since it makes no
sense to do so. DobiMigrate must navigate this variability
in API implementations because a vendor simply claiming

“S3 API support” is often a claim of relative versus absolute
API support.

HOW DOBIMIGRATE WORKS

The first step of migrating data between source and
destination S3 platforms is to ensure a bucket is created
on the destination platform. With both source and
destination buckets available, DobiMigrate will list the
contents of each platform’s bucket. In this first listing
there is typically a number of objects stored in the
source bucket while the destination bucket is empty.
DobiMigrate compares the scan results and generates
copy operations to copy objects found in the source
bucket to the destination bucket. After these copies
are completed, the first two phases (First Scan followed
by First Copy) of the migration are complete. When
copy operations are executed, the objects (including
all prefixes and delimiters) are copied to preserve any
notion of hierarchical organization present on the source.

DobiMigrate (as of version 5.9)

supports migrations between platforms

implementing the S3 API. In the same

manner that DobiMigrate migrates file data

between any vendor NAS platforms, it can

migrate S3 object data between any S3

compatible platforms.

3W H I T E P A P E R

After the First Scan and First Copy phases, DobiMigrate
enters the Steady State phase. Steady State is an ongoing
phase where DobiMigrate will, based on the frequency
assigned by the migration administrator, periodically
re-scan the source and destination buckets. The scan
results from the source and destination will be compared
to determine the delta operations required to re-
synchronize the two systems. With the delta operations
known, DobiMigrate distributes worklists to the proxies
who then execute their assigned worklists in a highly
multithreaded and parallel manner.

One thing to keep in mind is that there can be an extremely
high number of objects stored in the buckets, so it is
important to list out the contents of the buckets as quickly
as possible. The sort order of the object keys returned is
important and DobiMigrate has advanced processes that
divide up the keys in a manner that highly parallel scans
of the bucket contents can be executed. This approach is
several orders of magnitude faster than alternatives that
only use a single thread or a simplistic, non-optimized
process to list bucket contents.

While it is important to copy data as quickly as possible
between the two platforms, it is equally important to
verify the accuracy of the copy operations. To that end,
DobiMigrate verifies the content of all objects written
to the destination against their original source copy. It
accomplishes this by calculating a hash digest on each
object as it is read from the source system. After copying

to the destination, a read-back request is issued along with
an additional hash calculation on the object returned from
the destination. These hash digests equate to a unique

“fingerprint” associated with the data. Any variation in the
hash digests associated with the source and destination
object indicates a possible corruption of the object. If
that occurs, DobiMigrate will automatically re-copy the
object identified in the verification failure during its next
Steady State iteration. Additionally, DobiMigrate provides
chain-of-custody reporting that proves the accuracy of the
migration post-switchover by producing a list of objects
along with their associated hash digests, ETag values, and
timestamps.

At some point during the Steady State phase, a date/
time will be determined for executing a Switchover event
wherein the destination becomes the primary platform.
DobiMigrate provides a dedicated module for scheduling
and executing the switchover from the source to the
destination system. There are two types of switchover
events that can be executed. The first event is called a Dry
Run which allows the migration administrator to select any
collection of bucket pairings currently in Steady State, and
to run the processes involved with the switchover event
for the purpose of timing the event. The Dry Run takes the
guesswork out of estimating the amount of time required
for core switchover event activities related to DobiMigrate.
With that estimate in hand the administrator can adjust
the time required to coordinate with application owners to
redirect applications, perform acceptance testing, and/or
other activities prior to the switchover window closing.

The second type of Switchover event is the actual
switchover itself - as opposed to the Dry Run previously
described. During this event, DobiMigrate allows the
administrator to schedule and execute the steps required
to proceed from Steady State to the final Finished state
where applications and/or end users are redirected to the
destination platform. At this point, the chain-of-custody
report can be downloaded before declaring the migration
complete.

SUMMARY

DobiMigrate executes the fastest, most accurate
migrations using purpose-built technology paired with
a unique knowledge of various S3 implementations.

