
T E C H N I C A L B R I E F

Data Integrity During
a File Copy

T E C H N I C A L B R I E F

2T E C H N I C A L B R I E F

INTRODUCTION

WHY LEGACY TOOLS DO NOT VALIDATE DATA

WHAT DOBIMINER DOES DIFFERENTLY	

WHAT IS A HASH?

T YPES OF HASHING ALGORITHMS

HASHING FOR ENCRYPTION VS VALIDATION

HASH COLLISIONS

THE LIMITS OF NET WORK PROTOCOL 			
INTEGRIT Y CHECKING

SUMMARY

Table of Contents

3

4	

6	

7	

7	

8	

8	

9
	

9

3T E C H N I C A L B R I E F

I N T RO D U C T I O N

One of the critical activities that must be performed during a data copy is to validate
the accuracy of the copied data. After all, what is the use of copied data if its
integrity can’t be proven?

It’s a common misconception that using legacy copy tools such as Robocopy and
rsync automatically validate the integrity of the data. As you will discover in this
technical brief, this is both an erroneous and dangerous assumption. Because of the
substantial manual effort and risk involved, rarely are migrations or replications that
use legacy tools properly validated.

Through Datadobi’s extensive experience in data copy, it’s clear that during the
course of its journey, there are many opportunities for corruption to occur on
migrated or replicated data.

One of the key tenets of the DobiMiner® Suite is that every single file copied,
whether for migration or replication, must be validated to prove that no corruption
has occurred during the transfer. This is done with the use of hashes that are built
into the workflow and run automatically.

In addition to explaining why legacy tools do not properly validate data and how
DobiMiner does it differently, this technical brief will provide an in-depth explanation
of hashing, and explain why network protocol integrity checking is a false hope when
ensuring the integrity of copied data.

Data Integrity
During a File Copy

4T E C H N I C A L B R I E F

W H Y LEG AC Y TO O L S D O N OT VA LI DAT E DATA

The two most common copy tools, Robocopy and rsync, are discussed
here but the subject also applies to most other common copy utilities.

ROBOCOPY

Robocopy does not natively check the integrity of files written to a destination
system. Rather, the utility Microsoft® FCIV (File Checksum Integrity Verifier) utility
must be used. The FCIV utility must be downloaded from Microsoft and is an
unsupported utility. It can generate both MD5 and/or SHA-1 hashes of filesystem
object names provided as input.

Use of FCIV beyond testing a single file requires scripting. This means creating one
set of scripts to execute the Robocopy sessions, another set to mine the logs for
progress and/or errors, and another to run the FCIV validation checks. In addition,
since the validation scripts would have to be run separately on both the source and
destination systems, even more scripting would be required to take the output from
the FCIV operations and compare the results. If failures are found, either manual
effort to recopy the failed filesystem objects would be required, or further scripting
would be needed to take the list of failures and use them as additional input into the
Robocopy sessions.

RSYNC

Originally introduced in 1996, rsync brought a creative approach to copying
filesystem objects between Linux/Unix systems. But the approach taken by rsync
has led to a critical misunderstanding about its use of hashing.

When filesystem objects are being copied between systems, rsync will break a
file into “chunks” (basically a series of blocks) and will calculate a simple 32-bit
rolling checksum as well as a stronger 128-bit MD5 hash on the same block. These
values are used to determine whether the same chunk of data already exists on the
destination system and, if not, that it can be copied to the destination.

The important point about this process is that rsync is using checksums and hashing
to determine what to copy, but it is not using the checksums and hashes to validate
the integrity of the data. After data is copied to a destination system, entire
filesystem objects are not read back – nor is an additional hash digest calculated
from either the source or destination. This means that no comparison of the copied
file is ever made. In effect, when rsync writes data, it is assuming that the receiving
device commits the write with no errors. The rsync utility will not re-read the data
and compare against the source.

5T E C H N I C A L B R I E F

If validation of the previously written filesystem objects is required, then either
the *nix utilities md5sum or sha[1/224/256/384/256]sum must be used. Use of
md5sum or sha[n]sum beyond testing a single file is a scripting exercise. This means
creating one set of scripts to execute the rsync sessions, another set to mine the logs
for progress and/or errors, and another to run the MD5 or SHA validation checks.
Since the validation scripts would have to be run separately on both the source and
destination systems, even more scripting would be required to take the output from
the MD5 or SHA operations and compare the results. If failures are found, either a
manual effort to recopy the failed filesystem objects would be required, or additional
scripting is needed to take the list of failures and use them as additional input into
the rsync sessions.

For both Robocopy and rsync, because any validity checking can only be done once
all the data is copied, validation can only be carried out during a cutover window.
This has the effect of reducing the amount of data that can be cutover during the
allotted time, and even potentially derailing a costly cutover event completely if
errors cannot be resolved in time.

This risk, combined with the substantial manual scripting work required, means
that it is rare that any project of more than a few terabytes is ever validated
properly – leaving a company open to the possibility of data loss during a
migration or replication.

This risk, combined with the substantial manual scripting work required, means that it is rare
that any project of more than a few terabytes is ever validated properly – leaving a company
open to the possibility of data loss during a migration or replication.

6T E C H N I C A L B R I E F

In FIgure 1B, the difference shows an inconsistency
between the two filesystem objects, meaning that a
re-copy is required. Either some portion of the data was
changed or corrupted in transit through the network,
or there was potentially a bad disk write on the
destination system.

Any difference, no matter how small, between the two
filesystem objects will cause a mismatch between the hash
values – and this will qualify as a copy error. DobiMiner will

automatically re-copy the file during the next copy iteration
until it is able to copy and validate the file successfully.

All errors are logged at the file level so that administrators
are aware of the issue and can take action if needed.
Upon final copy (cutover), a report can then be generated
providing the hash value for every single file copied.

The rest of this technical brief provides in-depth information
on the use of hashing, along with a section on the limits of
network protocol integrity checking.

F I G U R E 1B Data copy invalidated by non-matching MD5 hash values

F I G U R E 1A Data copy validated by matching MD5 hash values

W H AT D O B I M I N E R D O E S D I F F E R E N T LY

In addition to many other differences with legacy tools,
DobiMiner takes a completely different approach to data
integrity that is both built into the workflow and is not
optional. DobiMiner automates all integrity checking
activities, thereby eliminating the scripting cycle of create,
debug, modify, test, and repeat.

When DobiMiner reads a filesystem object from the source
system, an MD5 hash is calculated. After the file is copied
and committed to the destination system, the file is re-read
and a second MD5 hash is calculated. The two hashes must
then match in order to verify that the file has been copied
and written to the destination system successfully.

.

Hashes match, data is valid.

Hashes do NOT match, data is NOT valid.

.

7T E C H N I C A L B R I E F

W H AT I S A H A S H?

Calculating a hash is essentially the process of computing a fixed summary value
based on an arbitrarily long input value. From a cryptographic viewpoint, many
security functions are implemented using hash calculations based on a mathematical
algorithm using a constant input number that, if unknown, makes it very difficult to
derive the original input number without knowing the data used to create the hash.

For example, take an input number of 8,443 and assume a simplistic hashing
algorithm is limited to multiplying this input number by 387. In this case, the hash
value is calculated as 8,443 x 387 generating the product of 3,267,441. It would
be very difficult to determine which two numbers were used when generating the
value of 3,267,441 – but if you were told that 387 was the “magic” number used in
the hashing algorithm, you could easily reverse the hash and determine the original
input number.

Real hash algorithms are much more complex but this is the basic principal
at work.

T Y PE S O F H A S H I N G A LG O R I T H M S

The exponential increase in compute power over time serves in some ways as a
double-edged sword. While it is now possible to execute highly complex hashing
algorithms very quickly, it is also the case that criminal elements have increased
compute power available to them as they attempt to break the encryption provided
by the hashing algorithm. To that end, many types of hashing algorithms have been
created over time as compute platforms have evolved from 8-bit on up to current
64-bit architectures.

Some of the more common hashing algorithms available are MD (Message Digest)
and SHA (Secure Hash Algorithm). Each one has different variants that require more
or less compute power to execute the algorithm given variable input data.

MD5 (Message Digest 5) is an algorithm that results in a 128-bit (16 byte) string that
will show as a 32-character-long hexadecimal number. Other MD algorithms are the
older MD2 and MD4.

8T E C H N I C A L B R I E F

SHA (Secure Hash Algorithm) offers more complex hash digest generation and has
several different outputs ranging from 160 bits up to 512 bits, with the larger outputs
requiring more compute power and time to generate. The different outputs of SHA
will be determined by the variant of SHA in use (i.e. SHA-1, SHA-256, etc.)

For encryption purposes, the newer, more complex algorithms are required, but they
come at the cost of increased compute overhead, which means slower processing.
While simpler algorithms may not be preferred for encryption purposes, they are still
useful for validating two independent copies of data, and this is the use case we are
focused on when copying data.

H A S H I N G FO R E N C RY P T I O N VS VA LI DAT I O N

From a security standpoint, hashing has historically been used to ensure that
communications between two endpoints are properly encrypted. In the context of
data copy, it is important to verify and validate that the data being copied is identical
and no corruption has occurred. The validation operations need to be not only fast,
but accurate.

DobiMiner leverages the MD5 hashing algorithm to verify the accuracy of the copied
data. MD5, while not valid from a cryptographic viewpoint, is one of the best options
when validating file content between disparate systems. Computationally, it is very
fast to generate hash values and the values generated are highly unlikely to suffer
from collisions (see below). The beauty of a hash is that the value is always a 128-
bit value (displayed as a 32-character hex value) despite the arbitrary size of the file
input being evaluated. The hash value will always be unique for each encountered file.

H A S H CO LLI S I O N S

In any discussion involving hashing algorithms, the subject of collisions always comes
up. Hash collisions can occur when two different inputs produce the same hash
output when run through the algorithm. When using hashes to validate data located
on two different systems, collisions are not a concern because we’re taking a single
discrete filesystem object from both the source and destination system as input for
the hash calculations. Even if the same exact filesystem object (down to the bit level)
is stored multiple times in different directory structures, the evaluation of those
entities is on a 1:1 basis, and each will be validated independently.

According to a forensics review1 performed by AccessData, the following statement
applies to the use of MD5 collisions in a file comparison scenario:

The MD5 algorithm breaks a file into 512-bit input blocks. Each block is run through a series of

functions to produce a unique 128-bit hash value for the file. Changing just one bit in any of the input

blocks should have a cascading effect that completely alters the hash results. Furthermore, since the

key size of 128 bits has 3.4x1038 possible combinations, the chance of randomly finding two files that

produce the same hash value should be computationally impossible (Schneier, 1996).

Note: Some less commonly-used
hash algorithms are BLAKE, RIPEMC,
Skein, SWIFFT, and others.

1AccessData whitepaper, “MD5 Collisions: The Effect on Computer Forensics,” April 2006. Available at https://ad-pdf.s3.amazonaws.com/papers/wp.MD5_Collisions.en_us.pdf

9T E C H N I C A L B R I E F

T H E LI M I T S O F N E T WO R K PROTO CO L
I N T EG R I T Y C H EC K I N G

While network protocols have integrity-checking built
into the core protocol functionality, strict reliance
on these mechanisms still leaves the door open to
undetected data corruption. Network protocols have no
way to detect if a bad disk write occurred and invalidated
some or all of a given filesystem object.

A detailed discussion of network protocol validation
mechanisms is beyond the scope of this paper but, in
general, ethernet provides transmission resilience by
including a frame check sequence (FCS) in each frame
being placed on the network. The FCS is a 32-bit cyclic
redundancy check (CRC) based on the payload included
in the ethernet frame. When using TCP/IP, the ethernet
frame is embedded in both IP packets and TCP packets,
both of which have header checksums included. The
TCP/IP header checksums and ethernet FCS provide a
relatively robust system of transmission validation. When
the receiving side calculates checksums that do not
match, then packets must be retransmitted.

While network protocols are generally highly resilient
to data corruption, there are times when silent data
corruption can occur during transmission between
endpoints. There are issues an FCS can’t detect, such as
any 1-bit error or adjacent 1-bit errors. The TCP and IP
header checksums are based on 16-bit ones complement
sum of the data. Reordering of two-byte words cannot
be detected (for example, 01 02 03 04 are reordered to
04 03 01 02). There are also other scenarios that can

“trick” the checksum.

SU M M A RY

Any data mobility operation involving network-based
transfers of file data between storage platforms is
susceptible to corruption. Legacy tools and network
protocols are unable to provide a level of proof required
by any credible enterprise of its data’s integrity.

The DobiMiner Suite automatically, and as standard,
uses hash digests to determine the validity of data
that has been copied between storage platforms, and
provides proof that no data corruption has occurred. If
file corruptions are detected, the DobiMiner Suite will
log the error condition and automatically re-copy the
file(s) identified during validation testing. Only once the
file(s) have been validated via the hash digest comparison
can the data then be considered valid and ready for
production use.

Contact Datadobi today to learn more about how we can
help your company transition to new technology quicker
and increase your ROI: info@datadobi.com

mailto:info%40datadobi.com?subject=

T E C H N I C A L B R I E F

Copyright © 2019 Datadobi, All rights reserved.

All product and company names are trademarks™ or registered® trademarks of their respective holders. Use of them does not imply any affiliation with
or endorsement by them. DobiMiner® is a trademark registered in the US Patent and Trademark Office. Microsoft® is the trademark of Microsoft Corporation.

Datadobi believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” DATADOBI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

Would you like to know more?

Contact sales@datadobi.com.

Datadobi.com

mailto:sales%40datadobi.com?subject=Contact%20Sales%20at%20Datadobi

